Abstract

Latest trend of miniaturization of thermal systems, calls for the improvement in their efficiency. Nanofluid contains the nanoparticles having large surface area and improves the thermal efficiency. This enhancement is the function of different mechanisms and parameter. This paper explores the heat transfer nature of nanofluids by addressing the experimental studies available in literature and conducting an experimental study using water based Copper oxide nanofluids. Nanoparticles were characterized by X-ray diffraction analysis and Field Emission Scanning Electron Microscopy to confirm the material, size and morphology of the nanoparticles. Thermal conductivity analysis has been performed at 30˚C, 40˚Cand 50˚C with 0.1%,0.5% and 1% concentration by weight. Mechanism of agglomeration, concentration and size of particles are found to be more significant in affecting the heat transfer. The maximum enhancement of 22.9 % in thermal conductivity is found in case of 1% weight concentration nanofluids consisting of small size (20nm) nanoparticles at temperature of 50˚C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.