Abstract
The simulation of engineering research is difficult, especially the engineering problem of the large differences between the size of the equipment and materials processed. At present, two methods are used to solve this problem, i.e. the equal scale reduction model and the study of only a part of it, which makes it inconsistent with the actual situation. To find a better way to improve this problem, the multi-scale is introduced. In this study, the heat transfer of the particles in a drying drum with engineering size is studied by multi-scale and fluid-solid coupling methods. The general situation of the drying drum is introduced, and the fluid-solid coupling mechanism based on multi-scale is established. A method of establishing a particle micro model is proposed. The feasibility of this method is proved by simulation and experiment, and the accuracy of the proposed model is improved by 15.62% compared with the traditional model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Fluid Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.