Abstract
Heat transfer rates in pulse combustor tail pipes and in other reversing, oscillating, turbulent flows have been found to be much higher than those of steady turbulent flow. To elucidate the mechanisms of the enhancement, the temperature and velocity fields, measured with two-line atomic fluorescence (TLAF) and laser Doppier velocimetry (LDV), respectively, are compared. Time-resolved wall heat fluxes and Nusselt numbers are also presented and discussed. Possible causes for the heat transfer enhancement in oscillating flows are reviewed and discussed in view of the data presented in this paper and the recent literature.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have