Abstract

Stratum ventilation has significant thermal non-uniformity between the occupied and upper zones. Although the non-uniformity benefits indoor air quality and energy efficiency, it increases complexities and difficulties in the air-side modulation. In this study, a heat removal efficiency (HRE) model is first established and validated, and then used for the air-side modulation. The HRE model proposed is a function of supply air temperature, supply airflow rate and cooling load. The HRE model proposed has been proven to be applicable to stratum ventilation and displacement ventilation for different room geometries and air terminal configurations, with errors generally within ±5% and a mean absolute error less than 4% for thirty-three experimental cases and five simulated cases. Investigations into the air-side modulation with the proposed HRE model reveal that for both the typical stratum-ventilated classroom and office, the variable-air-volume system can serve a wider range of cooling load than the constant-air-volume system. The assumption of a constant HRE used in the conventional method could lead to errors in the room temperature prediction up to ±1.3 °C, thus the proposed HRE model is important to the air-side modulation for thermal comfort. An air-side modulation method is proposed based on the HRE model to maximize the HRE for improving energy efficiency while maintaining thermal comfort. Results show that the HRE model based air-side modulation can improve the energy efficiency of stratum ventilation up to 67.3%. The HRE model based air-side modulation is also promising for displacement ventilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.