Abstract
Current buildings are facing different environmental demands, such as improving thermal comfort and energy efficiency and reducing exergy loss. However, conventional mixing ventilation (MV) cannot satisfy the different demands; therefore, advanced ventilation modes utilizing a non-uniform environment have gained attention. Multiple scenarios with different occupant activity levels cause difficulties in ventilation control. For these multi-factor and multi-objective oriented problems, two issues exist: 1) how to change the operational mode when the scenarios and demands change simultaneously, and 2) how to evaluate the overall ventilation performance under different scenarios and demand conditions. Therefore, this study proposes an approach for assisting in the decision making of ventilation strategies in different scenarios under single or multiple demand conditions. Using a typical office, three occupancy conditions were predesigned by combining MV, displacement ventilation (DV), and stratum ventilation (SV) solutions. Computational fluid dynamics simulations were performed to calculate the indicators for a single demand, namely, heat removal efficiency (HRE), contaminant removal efficiency (CRE), air diffusion performance index (ADPI), and modified index of mixing (IOM*). In the case of multiple demands, the Z-score was applied for standardization and ranking. The result showed that different scenarios with different demand orientations require different ventilation modes. Taking the HRE and IOM* as objectives, DV performed best for the scenario of independent working, whereas SV performed best for discussion and meeting. When considering four demands simultaneously, SV performed best in the scenario of meeting, while MV performed best in the remaining scenarios. This study has verified the effectiveness of using a multi-indicator evaluation method for ventilation strategy optimization under multi-factor and multi-scenario conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.