Abstract

This study reports both MagnetoHydroDynamics (MHD) and heat generation aspects of a water-based hybrid nanofluid flow with various shapes of the nanoparticles involving Nimonic 80A and [Formula: see text], over a moving wedge. Similarity transformations were adapted to obtain non-dimensional equations and solved using MATLAB bvp4c code. All the results and graphs were formulated after a positive outcome of our results with that available in existing literature. Nusselt number, which signifies the heat transfer rate in a flow, increased with an increase in empirical shape factors of the nanoparticle with a contrasting decrease in the drag experienced during the flow, represented by the skin friction coefficient. The velocity profile decreased at a rate of 0.75% for [Formula: see text] to [Formula: see text] due to the augmenting Lorentz forces while it augmented by 18.9% for an augmenting velocity ratio parameter from [Formula: see text] to [Formula: see text] due to the no-slip boundary conditions. Both the Nusselt number and skin friction coefficients decreased with an increase in magnetic parameter. An increase in the nanoparticle concentration resulted in an incrementing streamline value along with increasing temperature profile due to increasing thermal conductivity of the fluid flow system. The physical significance of the study involves in its applications in nuclear, steel industries, MRI scanning for its anti-corrosive and high thermal conductivity properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call