Abstract

PurposeIn the present article, sensitivity analysis was studied in the presence of the combined effects of thermal radiation, suction and magnetohydrodynamics (MHD) effects on a Nimonic 80A-Fe3O4/water hybrid nanofluid across moving a wedge with variable surface temperature and buoyancy effects.Design/methodology/approachThe governing equations were transformed using similarity transformations and solved using MATLAB bvp4c code and response surface methodology (RSM), with quadratic face-centred central composite design being implemented. All results and graphs were formulated after positive outcomes of our results with existing literature.FindingsAn increase in magnetic parameter (M) and velocity ratio parameter (R) resulted in an increase in velocity profiles and local Nusselt number, while a reverse trend was observed for temperature profiles. With radiation parameter Rd = 0.8, the local Nusselt number increased by 4.08% as the velocity ratio parameter increased from R = 0.0 to R = 0.5. The Nusselt number was found to be most sensitive to R, while the latter produced negative sensitivity on skin friction coefficient. The skin friction coefficient for the hybrid nanofluid model increased by 35.39% compared to the regular fluid model, with a very low standard deviation value of 10−4. The Model F-value for Nusselt number model was found to be 939278.49 with a noise ratio of 3618.711. Skin friction coefficient was found to be most sensitive with respect to changes in the parametric values of M.Research limitations/implicationsNimonic 80A being a super-alloy of nickel-iron-chromium and built in high frequency melting, it can work up to 1500°F and is extensively used in automobile exhaust valves.Practical implicationsThe present study finds numerous applications in biotoxicity studies, medical industries, water heaters and the forging of hot exhaust valve heads.Originality/valueIn view of various applications of our present study, there remains a gap in examining the sensitivity analysis of a hybrid nanofluid flow model across a moving permeable wedge using the Tiwari–Das model, which required clinical investigations numerically and statistically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.