Abstract

Cyclodextrins are simple yet powerful molecules widely used in medicinal formulations and industry for their ability to stabilize and solubilize guest compounds. However, recent evidence shows that 2-hydroxypropyl-β-cyclodextrin (HPβCD) causes severe hearing loss in mice, selectively killing outer hair cells (OHC) within 1week of subcutaneous drug treatment. In the current study, the impact of HPβCD on auditory physiology and pathology was explored further as a function of time and route of administration. When administered subcutaneously or directly into cerebrospinal fluid, single injections of HPβCD caused up to 60dB threshold shifts and widespread OHC loss in a dose-dependent manner. Combined dosing caused no greater deficit, suggesting a common mode of action. After drug treatment, OHC loss progressed over time, beginning in the base and extending toward the apex, creating a sharp transition between normal and damaged regions of the cochlea. Administration into cerebrospinal fluid caused rapid ototoxicity when compared to subcutaneous delivery. Despite the devastating effect on the cochlea, HPβCD was relatively safe to other peripheral and central organ systems; specifically, it had no notable nephrotoxicity in contrast to other ototoxic compounds like aminoglycosides and platinum-based drugs. As cyclodextrins find expanding medicinal applications, caution should be exercised as these drugs possess a unique, poorly understood, ototoxic mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.