Abstract

This study explored the physiological roles of PGE-type receptor 4 (EP4) in auditory function. EP4-deficient mice exhibited slight hearing loss and a reduction of distortion-product otoacoustic emissions (DPOAEs) with loss of outer hair cells (OHCs) in cochleae. After exposure to intense noise, these mice showed significantly larger threshold shifts of auditory brain–stem responses (ABRs) and greater reductions of DPOAEs than wild-type mice. A significant increase of OHC loss was confirmed morphologically in the cochleae of EP4-deficient mice. Pharmacological inhibition of EP4 had a similar effect to genetic deletion, causing loss of both hearing and OHCs in C57BL/6 mice, indicating a critical role for EP4 signaling in the maintenance of auditory function. Pharmacological activation of EP4 significantly protected OHCs against noise trauma, and attenuated noise-induced hearing loss in C57BL/6 mice. These findings suggest that EP4 signaling is necessary for the maintenance of cochlear physiological function and for cochlear protection against noise-induced damage, in particular OHCs. EP4 might therefore be an effective target for cochlear disease therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.