Abstract

BackgroundHealth impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches.MethodsTallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5) from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11%) per 10 μg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67%) and 0.73% (95% CI 0.47–0.93%) per 10 μg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY).ResultsThe annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 μg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528) premature deaths resulting in 3859 (95% CI 10236636) Years of Life Lost (YLL) per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10) years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of premature deaths, the decrease in life expectancy among the actual cases is around 13 years. As for the morbidity, the short-term effects of air pollution were estimated to result in an additional 71 (95% CI 43–104) respiratory and 204 (95% CI 131–260) cardiovascular hospitalizations per year. The biggest external costs are related to the long-term effects on mortality: this is on average €150 (95% CI 40–260) million annually. In comparison, the costs of short-term air-pollution driven hospitalizations are small €0.3 (95% CI 0.2–0.4) million.ConclusionSectioning the city for analysis and using GIS systems can help to improve the accuracy of air pollution health impact estimations, especially in study areas with poor air pollution monitoring data but available dispersion models.

Highlights

  • Health impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposureresponse functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios

  • Health impact assessment (HIA) is a combination of procedures, methods and tools by which a policy, programme or project may be evaluated based on its potential effects on the health of a population, and the distribution of those effects [1]

  • Mortality and morbidity data Altogether, 388 964 registered residents of Tallinn were identified in 84 sections of the city

Read more

Summary

Introduction

Health impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposureresponse functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches. Health impact assessment (HIA) is a combination of procedures, methods and tools by which a policy, programme or project may be evaluated based on its potential effects on the health of a population, and the distribution of those effects [1]. Baseline mortality or morbidity in the population as well as exposure-response functions from epidemiological studies helps us to estimate trends in negative health effects associated with alternative scenarios. Even though several authors [7,8] have subsequently discussed some of the difficulties associated with HIAs in this field, the basic principles have remained unchanged

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call