Abstract
BackgroundThe effects of air pollution on endothelial function remain unclear across populations. We aimed to use brachial artery flow-mediated dilatation (FMD) to identify demographic differences in the effects of air pollution exposure on endothelial dysfunction.MethodsWe measured FMD in 850 participants from October 2016 to January 2020. Location-specific concentrations of fine particulate matter < 2.5 μm aerodynamic diameter (PM2.5), inhalable particulate matter < 10 μm aerodynamic diameter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) measured by fixed ambient air monitoring stations were collected for short- and long-term exposure assessment. Multiple linear regression models and restricted cubic splines were used to assess the associations before and after stratification by age and sex.ResultsThis study eventually included 828 participants [551 (66.5%) younger than 65 years and 553 (66.8%) men]. Each 10 µg/m3 increase in 7-day exposure to PM2.5 and PM10 was significantly linearly associated with a 0.07% (β = -0.07, 95% CI: -0.13 to -0.004) and 0.05% (β = -0.05, 95% CI: -0.10 to -0.004) decrease in FMD in the fully adjusted model. After full adjustment, long-term exposure to all air pollutants was significantly associated with impaired FMD. Each 10 µg/m3 increase in long-term exposure to PM2.5 and PM10 was significantly associated with a -0.18% (95% CI: -0.34 to -0.03) and − 0.23% (95% CI: -0.40 to -0.06) change in FMD, respectively. After stratification, the associations of lower FMD with long-term exposure to PM2.5, PM10, SO2, NO2, and CO significantly persisted in men and participants younger than 65 years instead of women or older participants. For short-term exposure, we observed differences consistent with long-term exposure and a stronger effect of 7-day exposure to SO2 in men due to a significant interaction effect.ConclusionShort- and long-term exposure to different air pollutants are strongly associated with decreased endothelial function, and susceptibility to air pollution varies significantly with age and sex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.