Abstract

Although health benefits of physical activity are well known, the risk of physical activity in polluted air is unclear. Our objective is to investigate health effects resulting from physical activity in polluted air by looking at particle deposition in human tracheobronchial (TB) airways. Airflow and particle deposition in TB airways were investigated using a computational fluid dynamics (CFD) method. We chose three regional airways: upper (G3–G5), central (G9–G11) and lower (G14–G16). Physical activity was described by breathing rate at the mouth, for three levels of activity: sedentary (15 l/min), moderate (30 l/min) and intense (60 l/min). We found that particle deposition was strongly affected by physical activity. Particles are deposited in greater number in the lower airways (G14–G16) during sedentary activity, more in the upper airways (G3–G5) during intense activity, and uniformly in the airways during moderate activity. The difference in the deposition pattern was due to the reason that physical activity increased the airflow which increased inertial impaction. Our modeling of particle deposition in the human respiratory airways shows that there are different health effects for different activity levels: sedentary activity leads to chronic health effects, intense activity results in acute effects, and moderate activity minimizes the adverse health effects of physical activity in polluted air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.