Abstract
The interaction between polyphenols and polysaccharides plays an important role in increasing the turbidity stability of fruit juice and improving unpleasant sensory experiences. The binding adsorption behavior between hawthorn pectin (HP) and polyphenols (epicatechin and chlorogenic acid) accorded with the monolayer adsorption behavior driven by chemical action and were better fitted by pseudo-second order dynamic equation and Langmuir model. The HP binding sites (Qm) and adsorption capacity (Qe) to epicatechin were estimated at 75.188 and 293.627 μg/mg HP, respectively, which was about nine and twelve times higher than that of chlorogenic acid. The interaction between HP and polyphenols exhibited higher turbidity characteristics, particle size and lower zeta potential than epicatechin and chlorogenic acid alone. Meanwhile, according to Fourier Transform Infrared Spectroscopy (FT-IR) analysis, it could be speculated that the interaction between HP and polyphenols resulted in chemical combination. Moreover, ΔH < 0 and TΔS < 0, which indicated that the interaction between HP and polyphenols was mainly driven by hydrogen bonds and van der Waals forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.