Abstract

Herein, a functionalized green hydrogel nanocomposite based on carboxymethylated gum tragacanth and nanobentonite (GTBCH) was designed via free-radical polymerization approach for the elimination of Aspartame (AS) from wastewater. The GTBCH fabrication was validated by Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques. Central composite design (CCD) was efficaciously applied to determine the quadratic polynomial approach for predicting the adsorption capacity (qe) of AS. The optimum sequestration conditions were dosage (0.8 g L‒1), agitation time (35 min) initial AS concentration (60 mg L−1), pH (6) and temperature (308 K). The CCD results revealed that dosage of GTBCH and initial concentration have greater impact on qe followed by pH, time, and temperature. The significant adsorption capacity (392.04 mg g−1), calculated from Langmuir model, could be attributed to the stronger interactions prevalent between AS and GTBCH. Diffusion investigations depicted the uptake of AS via surface adsorption, liquid film and intraparticle diffusion, respectively. Ionic strength and real water have minor effect on the adsorption capacity demonstrating electrostatic interaction has least impact in adsorption process. The pHzpc, FTIR and XPS investigations revealed hydrogen bonding, n-π and van der Waals interactions as the principal removal mechanisms. Robust design, high adsorption capacity, eco-friendly facets along with excellent reusability indicated the GTBCH as a competent adsorbent for AS decontamination from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call