Abstract

Optimal sizing with energy management strategy as a transition pathway towards a sustainable 100% renewable energy-based microgrid is investigated in this paper. Due to the challenges of intermittency of renewable energy, microgrid operations are complicated. Hence, in order to overcome some of the challenges facing microgrid planning and operations, optimal capacity sizing incorporated with energy management strategy considering time-ahead generation prediction is proposed. The system model consists of wind turbine (WT), solar photovoltaic (PV) and battery energy storage system (BESS). The generation forecasting output is used to reschedule the flexible demand resources (FDR) to reduce the mismatch between power demand and supply, and optimal sizing of components is performed jointly to determine the optimal capacity values of the PV, WT, and BESS for minimal investment costs. The optimization results for the scenarios with and without load shifting effects of FDRs are determined and analyzed for the case study. From the results obtained, the application of demand scheduling program using the generation forecasting outputs resulted in a cost-saving of 12.41%. The forecasting model is implemented using a random forest algorithm on python platform and the mixed-integer linear program on MATLAB® environment is used to model and solve the capacity sizing problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.