Abstract
Needle insertion is the most basic skill in medical care, and training has to be imparted not only for physicians but also for nurses and paramedics. In most needle insertion procedures, haptic feedback from the needle is the main stimulus in which novices need training. For better patient safety, the classical methods of training the haptic skills have to be replaced with simulators based on new robotic and graphics technologies. This paper reviews the current advances in needle insertion modeling, classified into three sections: needle insertion models, tissue deformation models, and needle-tissue interaction models. Although understated in the literature, the classical and dynamic friction models, which are critical for needle insertion modeling, are also discussed. The experimental setup or the needle simulators that have been developed to validate the models are described. The need of psychophysics for needle simulators and psychophysical parameter analysis of human perception in needle insertion are discussed, which are completely ignored in the literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have