Abstract
Lung cancer is the leading cause of cancerrelated mortality worldwide. In addition to localizing and segmenting lung nodules, a non-invasive risk assessment system can also help clinicians tailor treatment decisions in a timely manner, ultimately improving patient outcomes. Artificial intelligence (AI) technologies are increasingly being used in medical imaging to assess the risk of lung nodules, especially for malignancy classification. However, little research has been conducted on the assessment of other related risks. This work comprehensively reviews AI applications in lung nodule risk assessment, including malignancy diagnosis, pathological subtype assessment, metastasis risk evaluation, specific receptor expression identification, and disease progression tracking. It details common public databases used and state-of-the-art AI techniques, along with their benefits and challenges like data scarcity, generalizability, and interpretability. We anticipate that future research will tackle these issues, thereby increasing the improved interpretability and generalizability of AI methods in clinical workflows.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have