Abstract

Hankel-norm approximation is a model reduction method for linear time-invariant systems, which provides the best approximation in the Hankel semi-norm. In this paper, the computation of the optimal Hankel-norm approximation is generalized to the case of linear time-invariant continuous-time descriptor systems. A new algebraic characterization of all-pass descriptor systems is developed and used to construct an efficient algorithm by refining the generalized balanced truncation square root method. For a wide practical usage, adaptations of the introduced algorithm towards stable computations and sparse systems are suggested, as well as an approach for a projection-free algorithm. To show the approximation behavior of the introduced method, numerical examples are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.