Abstract

It is shown how the Zakharov-Shabat (ZS) eigenvalue problem for rational reflection coefficient may be reduced to the ZS problem with zero reflection coefficient. The soliton solutions to this reduced problem are obtained using the B\acklund transform. Hence the solutions to the original problem are shown to be half solitons. It is demonstrated how selective pulses in nuclear magnetic resonance may be calculated using this technique. In particular, almost perfect 90\ifmmode^\circ\else\textdegree\fi{} self-refocused and 180\ifmmode^\circ\else\textdegree\fi{} refocusing selective pulses are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.