Abstract

A spin strongly driven by two harmonic incommensurate drives can pump energy from one drive to the other at a quantized average rate, in close analogy with the quantum Hall effect. The pumping rate is a nonzero integer in the topological regime, while the trivial regime does not pump. The dynamical transition between the regimes is sharp in the zero-frequency limit and is characterized by a Dirac point in a synthetic band structure. We show that the pumping rate is half-integer quantized at the transition and present universal Kibble-Zurek scaling functions for energy transfer processes. Our results adapt ideas from quantum phase transitions, quantum information, and topological band theory to nonequilibrium dynamics, and identify qubit experiments to observe the universal linear and nonlinear response of a Dirac point in synthetic dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.