Abstract

The present work reports on autotrophic metabolism in four H2/CO2-utilizing acetogenic bacteria isolated from the human colon (twoClostridiumspecies, oneStreptococcusspecies, andRuminococcus hydrogenotrophicus). H2/CO2-utilization by these human acetogenic strains occurred during both exponential and stationary phases of growth. Acetate was the major metabolite produced by all isolates following the stoichiometric equation of reductive acetogenesis. Furthermore, the ability of these acetogenic bacteria to incorporate13CO2into acetate in the presence of H2in the gas phase demonstrated the utilization of the reductive pathway of acetate formation from a one-carbon compound. Energy conservation during the autotrophic metabolism in colonic acetogens might involve sodium- or proton-chemiosmotic mechanisms. A sodium-dependent ATP generation was only demonstrated in oneClostridiumspecies, whereas sodium could be replaced by potassium in other strains. The minimal thresholds of hydrogen uptake were determined and varied from 1100 to 3680 ppm depending on the acetogenic strain. These values appeared higher than those measured for the colonic methanogen,Methanobrevibacter smithii.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.