Abstract

Cow’s milk allergy (CMA) is one of the earliest and most common food allergy and can be elicited by both IgE- or non-IgE-mediated mechanism. We previously described dysbiosis in children with IgE-mediated CMA and the effect of dietary treatment with extensively hydrolyzed casein formula (EHCF) alone or in combination with the probiotic Lactobacillus rhamnosus GG (LGG). On the contrary, the gut microbiota in non-IgE-mediated CMA remains uncharacterized. In this study we evaluated gut microbiota composition and fecal butyrate levels in children affected by non-IgE-mediated CMA. We found a gut microbiota dysbiosis in non-IgE-mediated CMA, driven by an enrichment of Bacteroides and Alistipes. Comparing these results with those previously obtained in children with IgE-mediated CMA, we demonstrated overlapping signatures in the gut microbiota dysbiosis of non-IgE-mediated and IgE-mediated CMA children, characterized by a progressive increase in Bacteroides from healthy to IgE-mediated CMA patients. EHCF containg LGG was more strongly associated with an effect on dysbiosis and on butyrate production if compared to what observed in children treated with EHCF alone. If longitudinal cohort studies in children with CMA will confirm these results, gut microbiota dysbiosis could be a relevant target for innovative therapeutic strategies in children with non-IgE-mediated CMA.

Highlights

  • Cow’s milk allergy (CMA) is one of the earliest and most common food allergy and can be elicited by both IgE- or non-IgE-mediated mechanism

  • Butyrate-producing bacteria were significantly enriched by dietary treatment with extensively hydrolyzed casein formula (EHCF) with the probiotic Lactobacillus rhamnosus GG (LGG)[15]

  • According to disease state and dietary treatment, the CMA patients were subdivided in three groups: Group 1 (CMA patients at diagnosis before any dietary intervention) (n = 23); Group 2 (CMA patients treated for 6 months with extensively hydrolysed casein formula, EHCF) (n = 9); Group 3 (CMA patients treated for 6 months with EHCF containing the probiotic L. rhamnosus GG, LGG) (n = 14)

Read more

Summary

Introduction

Cow’s milk allergy (CMA) is one of the earliest and most common food allergy and can be elicited by both IgE- or non-IgE-mediated mechanism. We previously described dysbiosis in children with IgEmediated CMA and the effect of dietary treatment with extensively hydrolyzed casein formula (EHCF) alone or in combination with the probiotic Lactobacillus rhamnosus GG (LGG). In this study we evaluated gut microbiota composition and fecal butyrate levels in children affected by non-IgE-mediated CMA. We found a gut microbiota dysbiosis in non-IgE-mediated CMA, driven by an enrichment of Bacteroides and Alistipes. Gut microbiota features in children affected by non-IgE-mediated CMA are still poorly characterized. We aimed to comparatively evaluate gut microbiota composition and butyrate production in children affected by non-IgE-mediated CMA and in healthy controls. The impact of treatment with EHCF alone or in combination with LGG was investigated, and a comparative evaluation of gut microbiota features in IgE- and non-IgE mediated CMA was performed

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call