Abstract
Simple SummaryGut health evaluation is a topic of great research interest in animal production, since the intestinal features (such as the microbiota and the mucin composition, as well as the mucosal morphology) are usually diet dependent, thus also directly influencing the growth performance of the animals. Insects are currently considered a novel, promising alternative protein source for animal feeding due to their remarkable nutritional properties, low competitiveness with human food and environmental implications, but data regarding the gut health of insect-fed animals are still very limited. We herein demonstrated that yellow mealworm (Tenebrio molitor, TM) meal utilization at low inclusion rates (5%) represents the most feasible alternative in terms of gut microbiota characteristics (identification of a phylum profile with better feed digestion and higher capacity of harvesting) and mucin dynamics (higher mucin production) in broiler chickens.A total of 160 female broiler chickens were divided into four dietary treatments (control feed [C] and 5, 10 and 15% TM meal inclusion, respectively, with five replicate pens/treatment and eight birds/pen) to investigate the effects of Tenebrio molitor (TM) meal utilization on poultry gut microbiota and mucin composition. The cecal microbiota assessment displayed a shift in the beta diversity in chickens fed TM-based diets. The TM10 and TM15 birds showed a significant decrease in the relative abundance of Firmicutes phylum and lower Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05), respectively, than the TM5 group. The relative abundance of Clostridium, Alistipes and Sutterella genera significantly increased in TM chickens (FDR < 0.05), while birds fed TM-based diets displayed a significant decrease in the relative abundance of Ruminococcus genus in comparison with the C group (FDR < 0.05). Gut mucin composition evaluation revealed higher mucin staining intensity in the intestinal villi of TM5 birds than the other TM groups, as well as mucin reduction in the intestinal villi of TM10 birds when compared to the C group (p < 0.05). In conclusion, dietary TM meal utilization (especially the 10–15% inclusion levels) may negatively influence either the cecal microbiota or the intestinal mucin dynamics of broiler chickens.
Highlights
Effective functionality and health of the gastrointestinal tract (GIT) are important factors in determining animal performance [1]
The GIT mucosal immune system can provide the microbiota with several substances such as mucus and antimicrobial peptides in order to protect the host against the invasion of bacteria through the intestinal walls [1]
It is implicated in several physiological processes, since it acts as a lubricant enhancing the propulsion of chyme, modulates nutrient digestion and absorption because of its permeability, protects the underlying epithelium from physical and chemical injury and prevents the entry of enteric pathogens [3]
Summary
Effective functionality and health of the gastrointestinal tract (GIT) are important factors in determining animal performance [1]. Gut microbiota contribute to several physiological (i.e., development and maturation of the immune system) and metabolic (i.e., fermentation of the non-digestible dietary components, modulation of endogenous epithelial-derived mucus secretion, regulation of intestinal epithelial cell differentiation and proliferation) functions of the GIT mucosal barrier. Among the GIT-produced substances, the mucus, an adherent gel layer that covers the entire surface of the GIT mucosa, represents the first barrier between the intestinal lumen and the absorptive cells It is implicated in several physiological processes, since it acts as a lubricant enhancing the propulsion of chyme, modulates nutrient digestion and absorption because of its permeability, protects the underlying epithelium from physical and chemical injury and prevents the entry of enteric pathogens [3]. Bacterial colonization and proliferation have been reported to widely influence gut mucin composition, in particular by the synthesis of mucin-specific glycosidases, glycosulfatases and proteases [5,6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have