Abstract
BackgroundMany phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. Accordingly, we hypothesized that insects in desert environments may evolve associations with gut bacteria to adapt to the extremely low nutrient availability. For this, we conducted a systematic survey of bacterial communities in the guts of weevils developing inside mud chambers affixed to plant roots in the Negev Desert of Israel, based on 16S rRNA gene amplicon sequencing.ResultsOur analyses revealed that gut bacterial communities in weevil larvae were similar across a wide geographical range, but differed significantly from those of the mud chambers and of the surrounding soils. Nevertheless, a high proportion of bacteria (including all of the core bacteria) found in the weevils were also detected in the mud chambers and soils at low relative abundances. The genus Citrobacter (of the Enterobacteriaceae family) was the predominant group in the guts of all individual weevils. The relative abundance of Citrobacter significantly decreased at the pupal and adult stages, while bacterial diversity increased. A mini literature survey revealed that members of the genus Citrobacter are associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation in different insects.ConclusionsThe results suggest that although weevils could potentially acquire their gut bacteria from the soil, weevil host internal factors, rather than external environmental factors, were more important in shaping their gut bacterial communities, and suggest a major role for Citrobacter in weevil nutrition in this challenging environment. This study highlights the potential involvement of gut bacteria in the adaptation of insects to nutritional deficiencies under extreme desert conditions.
Highlights
Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits
We took a first step in addressing this hypothesis by focusing on the gut bacteria of weevils (Conorhynchus palumbus Olivier and Menecleonus virgatus Schoenherr; Coleoptera: Curculionidae: Lixinae) that develop singly in a mud chamber affixed to the roots of two summer annual plants of the genus Salsola (Salsola inermis Forssk and S. incanescens Mey; Chenopodiaceae) [23] (Fig. 1)
We investigated bacterial communities in surrounding soils and in the mud chamber itself to examine to what extent the external soil environment vs. the internal physiological environment inside the weevil guts shapes the composition of their gut bacterial communities
Summary
Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. We took a first step in addressing this hypothesis by focusing on the gut bacteria of weevils (Conorhynchus palumbus Olivier and Menecleonus virgatus Schoenherr; Coleoptera: Curculionidae: Lixinae) that develop singly in a mud chamber affixed to the roots of two summer annual plants of the genus Salsola (Salsola inermis Forssk and S. incanescens Mey; Chenopodiaceae) [23] (Fig. 1). These weevils are widely distributed in the Negev Desert of Israel [24]. It is unclear how these weevils obtain sufficient nutrients for their development
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.