Abstract

Simple SummaryThe gut microbiota plays an important role in insect physiology and behavior. The interaction among the different structures of gut bacterial community in the fall armyworm (FAW), Spodoptera frugiperda, and different host plants, and whether these different gut bacteria are responsible for the rapid spread of FAW to a variety of host plants after invasion are largely unexplored. In the present paper, we used a culture-independent approach targeting the bacterial 16S rRNA gene of gut bacteria of the 5th instar larvae of FAW fed on four different host plants. It aimed to analyze the effects of host plants on gut bacteria abundance, community structure and metabolic function. We found that host plants exerted considerable effects on the structure and composition of the gut bacteria in FAW and the differences among the four groups identified were significant. They were related to the detoxification and adaptation of FAW to toxic secondary metabolites of the host plant. These differences enabled the gut microbiome to perform different functions. This study lays a foundation for further studies on the function of intestinal bacteria in FAW and the adaptive mechanism to the host.The fall armyworm (FAW), Spodoptera frugiperda, is one of the most important invasive species and causes great damage to various host crops in China. In this study, the diversity and function of gut bacteria in the 5th instar larvae of FAW fed on maize, wheat, potato and tobacco leaves were analyzed through 16S rRNA sequencing. A total of 1324.25 ± 199.73, 1313.5 ± 74.87, 1873.00 ± 190.66 and 1435.25 ± 139.87 operational taxonomic units (OTUs) from the gut of FAW fed on these four different host plants were detected, respectively. Firmicutes, Proteobacteria and Bacteroidetes were the most abundant bacterial phyla. Beta diversity analysis showed that the gut bacterial community structure of larvae fed on different host plants was significantly differentiated. At the genus level, the abundance of Enterococcus in larvae fed on wheat was significantly lower than those fed on the other three host plants. Enterobacter and ZOR0006 were dominant in FAW fed on tobacco leaves, and in low abundance in larvae fed on wheat. Interestingly, when fed on Solanaceae (tobacco and potato) leaves which contained relative higher levels of toxic secondary metabolites than Gramineae (wheat and maize), the genera Enterococcus, Enterobacter and Acinetobacter were significantly enriched. The results indicated that gut bacteria were related to the detoxification and adaptation of toxic secondary metabolites of host plants in FAW. Further analysis showed that replication, repair and nucleotide metabolism functions were enriched in the gut bacteria of larvae fed on tobacco and potato. In conclusion, the gut bacterial diversity and community composition in FAW larvae fed on different host plants showed significant differences, and the insect is likely to regulate their gut bacteria for adaptation to different host plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.