Abstract
Simple SummaryFermented feed in growing pig nutrition may influence microbiota of the gastrointestinal tract, improve utilization of nutrients from the diet, and reduce the level of excreted ammonia and phosphorus released into the environment. In the research, fermentation of narrow-leafed lupine seeds was provided and fermented seeds were added to the pigs’ diet. In the 28-day experiment, 24 male pigs were divided into three groups. The control group was fed a soybean meal diet, whereas in the experimental diets, 50% of soybean meal (SBM) protein was replaced by raw or fermented lupine seeds. The influence of fermentation on performance results, gut environment and physiology, and selected blood metabolic parameters in young pigs, were analyzed. Fermentation did not affect pigs’ performance, metabolic, microbial and most gastrointestinal tract parameters, but influenced crypt depth, concentrations of short chain fatty acids and p-cresole in the proximal colon segment, and significantly lowered the pH of the middle colon digesta and ammonia contents. Fermentation improved the chemical composition of seeds, but due to the lack of a significant improvement in the performance, the results may prove to be economically unviable.The aim of this study was to: (1) provide controlled fermentation of narrow-leafed lupine seeds; (2) monitor seed composition, and (3) determine the influence of fermentation on the performance, gut environment and physiology, and selected blood metabolic parameters, in young pigs. Firstly, the effect of 24 h lupine seed fermentation by bacteria and yeast on seed chemical composition was determined. It increased contents of crude protein, crude fiber and ash, but reduced nitrogen-free extractive levels. The amino acid profile of fermented lupine (FL) was similar to that of raw lupine (RL) seeds, whereas the contents of oligosaccharides and P-phytate decreased significantly, in contrast to alkaloids. In fermented feed, pH dropped from 5.5 to 3.9. In the 28-day experiment, 24 male pigs were divided into three groups. The control group was fed a soybean meal diet (SBM), whereas in the experimental diets, 50% of SBM protein was replaced by RL or FL. Afterwards, eight pigs from each group were euthanized and their digesta and blood samples were collected. The FL use did not affect pigs’ performance, nor their metabolic, microbial and most gastrointestinal tract parameters, but influenced crypt depth. Fermentation affected concentrations of short chain fatty acids and p-cresole in the proximal colon segment. In the small intestine, the levels of acetate and butyrate decreased, and, in the caecum, the propionate level decreased. Fermentation significantly lowered the pH of the middle colon digesta and ammonia contents compared to RL. A part of SBM may be successfully replaced by RL and FL in young pigs’ diets.
Highlights
In the last few years, the prices of feed components in the world market, especially high-protein feed, remained 2-fold higher than ten years ago
In the fermented seeds, ether extract (EE) and Nitrogen-free extractives (NFE) contents decreased in comparison with raw lupine (RL)
Feng et al [27] found that an increase in the crude protein content in the case of fermentation mostly results from a decrease in the content of non-structural carbohydrates in the biomass, which was confirmed by this study
Summary
In the last few years, the prices of feed components in the world market, especially high-protein feed, remained 2-fold higher than ten years ago. This growth was due to the rising demand, fluctuations in supply and speculation in commodity markets. The whole of Europe, including Poland, for many years reduced its own production of protein components for animal feeds. Especially lupine seeds, can play an important role in this respect. According to some studies [1,2,3,4,5], the use of lupine seeds in piglets’ diet should be limited
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have