Abstract
Low-weight, passive, thermal-adaptive radiation technologies are needed to maintain an operable temperature for spacecraft while they experience various energy fluxes. In this study, we used a thin film coating with the Fabry–Pérot (FP) effect to enhance emissivity contrast (Δε) between VO2 phase-change states. This coating utilizes a hybrid material architecture that combines VO2 with a mid- and long-wave infrared transparent chalcogenide, zinc sulfide (ZnS), as a cavity spacer layer. We simulated the design parameter space to obtain a theoretical maximum Δε of 0.63 and grew prototype devices. Using x-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR), we determined that an intermediate buffer layer of TiO2 is necessary to execute the crystalline growth of monoclinic VO2 on ZnS. Through temperature-dependent FTIR measurements, our fabricated devices demonstrated FP-cavity enhanced adaptive thermal emittance.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have