Abstract

AbstractA common characteristic observed in many biological invasions is the existence of a lag between the time of arrival by the alien population and the time when established populations are noticed. Considerable advances have been made in modeling the expansion of invading species, and there is often remarkable congruence between the behavior of these models with spread of actual populations. While these models have been used to characterize expansion of very newly founded colonies, there have been few attempts to compare the behavior predicted from theory with spread in actual newly founded populations, largely due to the difficulty of sampling sparse populations. Models predict that time lags in the radial expansion of newly invaded populations may be due to time requirements for the population to grow from founding to detectable levels. Models also indicate that these time lags can be predicted based upon population parameters such as the intrinsic rate of population growth and diffusion coefficient. In this paper, we compared the behavior of these models with historical data on gypsy moth, Lymantria dispar, establishment and spread to show similarities between model predictions and observed population spread, both of which exhibited temporal lags of expansion. However, actual populations exhibited certain behaviors that were not predicted, and this could be due, in part, to the existence of Allee effects and stochasticity. Further work that incorporates these effects is needed to more fully understand the growth of incipient colonies of invading species. Ultimately, this information can be of critical importance in the selection of effective strategies for their detection and eradication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.