Abstract
Biodiversity is severely threatened by habitat destruction. As a consequence of habitat destruction, the remaining habitat becomes more fragmented. This results in time-lagged population extirpations in remaining fragments when these are too small to support populations in the long term. If these time-lagged effects are ignored, the long-term impacts of habitat loss and fragmentation will be underestimated. We quantified the magnitude of time-lagged effects of habitat fragmentation for 157 nonvolant terrestrial mammal species in Madagascar, one of the biodiversity hotspots with the highest rates of habitat loss and fragmentation. We refined species' geographic ranges based on habitat preferences and elevation limits and then estimated which habitat fragments were too small to support a population for at least 100 years given stochastic population fluctuations. We also evaluated whether time-lagged effects would change the threat status of species according to the International Union for the Conservation of Nature (IUCN) Red List assessment framework. We used allometric relationships to obtain the population parameters required to simulate the population dynamics of each species, and we quantified the consequences of uncertainty in these parameter estimates by repeating the analyses with a range of plausible parameter values. Based on the median outcomes, we found that for 34 species (22% of the 157 species) at least 10% of their current habitat contained unviable populations. Eight species (5%) had a higher threat status when accounting for time-lagged effects. Based on 0.95-quantile values, following a precautionary principle, for 108 species (69%) at least 10% of their habitat contained unviable populations, and 51 species (32%) had a higher threat status. Our results highlight the need to preserve continuous habitat and improve connectivity between habitat fragments. Moreover, our findings may help to identify species for which time-lagged effects are most severe and which may thus benefit the most from conservation actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Conservation biology : the journal of the Society for Conservation Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.