Abstract

The growth of superlattices (SLs) made from self-assembled nanocrystals (NCs) is a powerful method for creating new materials and gaining insight into fundamental molecular dynamics. Previous explorations of NCSL syntheses have mostly compared them to crystallization. However, NCSL synthesis has not broadly shown cooling crystallization from saturated solutions as a reversible crystallization-dissolution process. We demonstrate the reversible growth of NCSLs by dispersing NCs in liquid crystal (LC) "smart solvents," and harnessing the transitions between the isotropic and nematic phases of the LCs. The growth mode and morphology can be tuned. This process is a model platform for studying crystallization and demonstrates great potential in manufacturing NCSLs as colloidal crystals through liquid-phase epitaxy or colloidal synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call