Abstract

The growth of metal oxide thin films by laser-induced metalorganic chemical vapor deposition was investigated by changing wavelength, power, repetition rate, and irradiation angle of the excimer laser. When O2 was used as an oxidizing gas with 193 or 248 nm irradiation, amorphous TiO2 and crystalline PbO films were obtained in the laser-irradiated area of Si substrates from the parent metalorganic compounds, Ti(O–iC3H7)4 and (C2H5)3PbOCH2C(CH3)3, respectively. In contrast, no ZrO2 film could be formed from Zr(O–tC4H9)4. One-photon formation of TiO2 films was confirmed from laser power dependence measurements. The maximum growth rate of 0.05 Å per laser pulse was compared with that estimated by a simple surface reaction model, according to which the slow growth rate is due to the small absorption cross section of Ti(O–iC3H7)4 and mild fluence of laser irradiation. In experiments of ozone gas excitation by KrF laser, a SiO2 film was obtained by gas-phase reactions of the oxygen radical, O(1D), with Si(O–C2H5)4. The direct patterning of TiO2 and PbO films as well as the possibility of producing patterned PbTiO3 film was demonstrated. The growth of the patterned SiO2 film was prevented by gas-phase diffusion of intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call