Abstract

AbstractThe growth of high resistivity CdTe and (Cd,Zn)Te is successfully performed with different kinds of doping. In the literature intentionally undoped as well as doped crystals are presented with resistivities up to 1010 Ωcm. In this paper we review the growth of high resistivity CdTe and (Cd,Zn)Te. The mechanism of compensation is discussed regarding the different dopants and deep levels, which seem to be responsible for the high resistivity. A common compensation model explains the high resistivity by deep levels. The doping and the influence on the compensation mechanism is compared for several elements like tin, germanium and chlorine. The material properties and the crystal quality of undoped and doped CdTe as well as (Cd,Zn)Te are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.