Abstract

The migration enhanced embedded epitaxy (ME3) mechanism and 2D dopant distribution of the embedded trench region is investigated with the aim to realize the all-epitaxial, normally-off junction field effect transistor (JFET). We found that the embedded growth consists of two main components. First one is the direct supply without gas scattering and the other one is the surface migration supply via the trench opening edge, which dominate the ME3 process. An inhomogeneous 2D distribution of Aluminum (Al) concentration was revealed for the first time in the 4H-SiC embedded trench regions by the combined analysis of secondary ion mass spectrometry (SIMS) and scanning spreading resistance microscopy (SSRM) results. The maximum variation of Al concentration in the trench is estimated to be about 4-times, which suggests that the Al concentration is highest for the (0001) plane and lowest for the trench corner (1-10x) plane. Al concentration in the (1-100) plane, which determines the JFET p-gate doping level is 1.5-times lower than (0001) plane for trench region fabricated on Si-face wafers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call