Abstract

Bismuth tri-iodide (BiI3) is an attractive material for high energy resolution radiation detectors. For the purpose of this research, detectors were fabricated using single crystals grown from ultra-pure BiI3 powder; synthesized by the Physical Vapor Transport (PVT) technique. This technique yielded powder with total impurity level of 7.9 ppm. Efforts were also made to purify commercial BiI3 powder using a custom-built Traveling Zone Refining (TZR) system. Initial trial runs were successful in reducing the total impurity level of the commercial powder from 200 ppm to less than 50 ppm. Using the modified vertical Bridgman technique and a customized sharp tip ampoule, a large BiI3 single crystal was grown. The crystal had a surface area of 2.2 cm2 and a thickness of 0.8 cm, which corresponds to a volume of 1.78 cm3. Radiation detectors were fabricated and then tested by measuring their electrical characteristics and radiation response. An alpha particle spectrum (using a 241Am α-source) was recorded at room temperature with a BiI3 detector 0.09 cm thick and with a surface area of 0.16 cm2. The electron mobility was estimated to be 433 ± 79 cm2/V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.