Abstract

This work investigates theoretically possible dose rate effects in thermoluminescence (TL) and optically stimulated luminescence (OSL) materials by solving the rate equations for the stimulated luminescence process. Starting with the solution of the One-Trap–One-Recombination-Center (OTOR) model with parameters from the literature, we first showed that this model, with the chosen parameters, does not reproduce real luminescent material properties (e.g., TL curve and dose response). We then studied the physical phenomena responsible for dose rate effects in this model, and the influence of the model parameters on the dose rate response. As a result, we found that charge accumulation in the delocalized bands over unrealistic long periods (¿ hundreds of seconds) is responsible for dose rate effects. Such effect is caused by the particular choice of model parameters. When model parameters based on physical considerations and experimental results are chosen, no dose rate effects are observed. This work provides a deeper understanding of the luminescence process, by identifying the mechanisms that could be responsible for dose rate effects, and a theoretical foundation to the use of luminescent detectors for ultra-high dose rate dosimetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.