Abstract

Self-assembled quantum structures have been successfully grown for some time now but control over their uniformity has proven difficult due to the stochastic nature of surface diffusion. We have investigated the effect of vicinal InP(001) substrates on the uniformity of InAs quantum wires grown on InGaAlAs lattice-matched to InP using molecular beam epitaxy. Dense quantum wires were grown on both nominally flat and vicinal substrates off-cut by 0.9° toward the [110] direction for comparison. The off-cut angle was chosen to provide terraces which match the orientation and spacing of wires grown on nominally flat substrates. A modest but statistically significant improvement in the size distribution of the wires was observed on vicinal substrates through the analysis of ultrahigh resolution scanning electron micrographs. The interface between the wires and the off-cut substrate was studied using cross-sectional high resolution scanning transmission electron microscopy. In addition, a kinetic Monte Carlo model of epitaxial growth including full strain calculations was developed to further investigate the nucleation process. Using an anisotropic bond model to account for the surface energy of different crystallographic facets, our simulations produced wires similar to those observed experimentally while demonstrating the importance of anisotropic bonding compared to anisotropic diffusion. Growth on vicinal substrates is also simulated here and indicates that off-cut substrates should indeed improve the size distribution of quantum wires under proper growth conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call