Abstract

AbstractAimPlant growth and phenology respond plastically to changing climatic conditions in both space and time. Species‐specific levels of growth plasticity determine biogeographical patterns and the adaptive capacity of species to climate change. However, a direct assessment of spatial and temporal variability in radial growth dynamics is complicated, because long records of cambial phenology do not exist.LocationSixteen sites across European distribution margins of Juniperus communis L. (the Mediterranean, the Arctic, the Alps and the Urals).Time period1940–2016.Major taxa studiedJuniperus communis.MethodsWe applied the Vaganov–Shashkin process‐based model of wood formation to estimate trends in growing season duration and growth kinetics since 1940. We assumed that J. communis would exhibit spatially and temporally variable growth patterns reflecting local climatic conditions.ResultsOur simulations indicate regional differences in growth dynamics and plastic responses to climate warming. The mean growing season duration is the longest at Mediterranean sites and, recently, there has been a significant trend towards its extension of up to 0.44 days/year. However, this stimulating effect of a longer growing season is counteracted by declining summer growth rates caused by amplified drought stress. Consequently, overall trends in simulated ring widths are marginal in the Mediterranean. In contrast, durations of growing seasons in the Arctic show lower and mostly non‐significant trends. However, spring and summer growth rates follow increasing temperatures, leading to a growth increase of up to 0.32 %/year.Main conclusionsThis study highlights the plasticity in growth phenology of widely distributed shrubs to climate warming: an earlier onset of cambial activity that offsets the negative effects of summer droughts in the Mediterranean and, conversely, an intensification of growth rates during the short growing seasons in the Arctic. Such plastic growth responsiveness allows woody plants to adapt to the local pace of climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.