Abstract

Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015); producing spatial trend and temporal variability maps of phenological metrics; and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation of the association between phenological metrics and the management zone site conditions was discussed in relation to soil-climate interaction. The results demonstrate the potential of the phenological metrics to assess the spatial and temporal variability across cropping fields and to understand the soil-climate interaction. The approach presented in this paper provides a pathway to utilize phenological metrics for precision agricultural management application.

Highlights

  • Precision agriculture (PA) recognizes and manages intra-field spatial variability with the desired outcome of increasing profitability and reduced environmental impact [1]

  • We examine the potential of phenological metrics to assess the spatial and temporal crop growth variability across a cropping field

  • The aim of this paper is to explore the potential of remote sensing derived phenological metrics for assessing spatio-temporal variability in cropping fields and to understand the soil-climate interactions that strongly influence crop yield

Read more

Summary

Introduction

Precision agriculture (PA) recognizes and manages intra-field spatial variability with the desired outcome of increasing profitability and reduced environmental impact [1]. Spatial variability in crop yield is the result of complex interaction of factors influencing crop growth that include soil (such as nutrients, soil water availability), topographical factors (such as elevation) and climatic factors (such as rainfall and temperature) [5]. In addition to their spatial variability, some of these factors such as climate have temporal variability, which causes the spatial pattern of crop yield to vary from season to season. SSCM requires a comprehensive understanding of both spatial and temporal variability in crop growth

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call