Abstract

Using an ultracold gas of atoms, we have realized a quasi-two-dimensional Fermi system with widely tunable s-wave interactions nearly in a ground state. Pressure and density are measured. The experiment covers physically different regimes: weakly and strongly attractive Fermi gases and a Bose gas of tightly bound pairs of fermions. In the Fermi regime of weak interactions, the pressure is systematically above a Fermi-liquid-theory prediction, maybe due to mesoscopic effects. In the opposite Bose regime, the pressure agrees with a bosonic mean-field scaling in a range beyond simplest expectations. In the strongly interacting regime, measurements disagree with a purely 2D model. Reported data may serve for sensitive testing of theoretical methods applicable across different quantum physics disciplines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.