Abstract

We propose a rapid ground-state optomechanical cooling scheme in a hybrid system, where a two-level quantum dot (QD) is placed in a single-mode cavity and a nanomechanical resonator (NMR) is also coupled to the cavity via radiation pressure. The cavity is driven by a weak laser field while the QD is driven by another weak laser field. Due to the quantum destructive interference arisen from different transition channels induced by simultaneously driving the QD-cavity system in terms of the two different lasers, two-photon absorption for the cavity field can be effectively eliminated by performing an optimal quantum interference condition. Furthermore, it is demonstrated that the QD-cavity system can be unbalancedly prepared in two single-polariton states with different eigenenergies. If the frequency of the NMR is tuned to be resonant with transition between two single-polariton states, it is found that a fast ground-state cooling for the NMR can also be achieved, even when the QD-cavity system is originally in the moderate-coupling regime. Thus the present ground-state cooling scheme for the NMR may be realized with currently available experimental technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call