Abstract

We theoretically study the four-wave mixing (FWM) response in a quantum dot-cavity coupling system, where a two-level quantum dot (QD) is placed in an optical cavity while the cavity mode is coupled to the nanomechanical resonator via radiation pressure. The influences of the QD-cavity coupling strength, the Rabi coupling strength of the QD, and the power of the pump light on the FWM intensity are mainly considered. The numerical results show that the FWM intensity in this hybrid system can be significantly enhanced by increasing the QD-cavity coupling strength. In addition, the FWM intensity can be effectively modulated by the Rabi coupling strength and the pump power. Furthermore, the effects of the cavity decay rate and the cavity-pump detuning on the FWM signal are also explored. The obtained results may have potential applications in the fields of quantum optics and quantum information science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.