Abstract

Ab initio calculations on the valence electronic states of the BI molecule have been performed by using the entirely uncontracted all-electronic aug-cc-pVQZ (for the B atom) and Sadlej-pVTZ (for the I atom) basis sets and the internally contracted multireference singles and doubles configuration interaction method with Davidson size-extensively correction and Douglas-Kroll scalar relativistic correction. The potential energy curves of all valence states and the spectroscopic constants of bound states are fitted. It is the first time that the 12 Lambda-S states of BI molecule and all of the 23 Omega states generated from the former are studied in a theoretical way. Calculation results reproduce well most of the experimental data. The effects of the spin-orbit coupling and the avoided crossing rule between Omega states of the same symmetry are analyzed. The transition properties of the A3Pi0+, B3Pi1, and C1Pi1 states to the ground-state transitions are predicted, including the transition dipole moments, the Franck-Condon factors, and the radiative lifetimes. The radiative lifetime of the C1Pi1 state of BI molecule is less than 1 micros, while that of the A3Pi0+ and B3Pi1 states are the order of 1 ms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.