Abstract

Agricultural management practices that reduce greenhouse gas (GHG) emissions have been identified as effective mitigation strategies. However, research on carbon emissions from major crops in Northeast China focuses on national and provincial data, overlooking city-scale variability and uncertainties, which prevents fine-scale assessment of crop emissions reduction potential. To address this, a life cycle assessment (LCA) combined with the Monte Carlo method was conducted to estimate the carbon footprint of rice, maize, and soybean production for different cities in Northeast China from 1991 to 2020. The results showed that the top one-third of cities with the highest total carbon emissions (TCE) account for approximately 40 % of the region's TCE. Nitrogen losses and production processes related to nitrogen fertilizer application were identified as the primary contributors to TCE from crop production, accounting for 29.6–62.5 % of the total, with a relative importance of 58.5–78.2 %. Scenario analysis indicated that optimizing nitrogen fertilizer management and reducing active nitrogen losses are the most effective strategies for reducing TCE from major crop production, offering a reduction potential of 34.5–60.6 %. Recommended strategies include phased application of nitrogen fertilizer, the addition of nitrification inhibitors, or using slow-release nitrogen fertilizers, combined with appropriate increases in crop planting density, straw return decomposition technologies and water-saving irrigation methods to reduce GHG emissions. These strategies aim to achieve low-carbon sustainable grain production and provide a foundation for exploring the emissions reduction potential of agricultural inputs and optimizing regional crop layouts, offering new insights for developing more effective GHG reduction strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.