Greenhouse Gas Emission Reduction and Tailgas Maximization at ORYXGTL

  • Abstract
  • Literature Map
  • Similar Papers
Abstract
Translate article icon Translate Article Star icon
Take notes icon Take Notes

Abstract ORYX GTL, a joint venture between shareholders Qatar Petroleum and Sasol Synfuels International, is a pioneering gas-to-liquids (GTL) facility that produces premium diesel fuel, naphtha and LPG. The objectives of this paper are related to Greenhouse Gas (GHG) management at ORYX GTL: it aims toidentify the various sources of GHGdescribe the methodology to quantify GHG emissionsidentify various opportunities to reduce GHG emissions, andprovides a case study on GHG emission reduction through utilization of tailgas as fuel in fired heaters. The paper is organized in two sections; the first section presents a brief overview of the ORYX GTL process, identifies the various GHG emission sources, quantifies the GHG emissions and describes the concepts and options to reduce GHG emissions. The second section describes a case study on the opportunity to optimize fired heaters to make use of tailgas and steps that can be taken to make use of these opportunities. A brief overview is also provided on projects executed by ORYX GTL to support the company's strategy of optimizing sustainability and stability by reducing GHG emissions. The major GHG emission sources from the ORYX GTL facility are broadly classified as combustion and flaring emissions. The GHG emissions at ORYX GTL are derived from estimates and calculations taking into account the composition of fuel streams, the energy content of the fuel, available measurement data, emission factors and mass balance approaches. It was found that flaring of tailgas contributes significantly to the release of GHG emissions from the ORYX GTL facility. The GHG reduction was achieved by making use of Advanced Process Control techniques, utilization of tailgas for fuel, and recovery of low pressure vent gases to use as fuel in process heaters. The use of tailgas as a fuel to fired heaters increased from 10% to 90–95% of total heat duty since start-up. The increase of tailgas as fuel resulted in the reduction of natural gas as fuel, improving the carbon efficiency of the plant and thus reduced the environmental impact. In 2012, a 23% reduction in GHG emissions was achieved compared to 2011 levels due to maximizing tailgas utilization as fuel and stable plant operations. The results from this study highlight that a further reduction of GHG emissions is achievable by focusing on plant stability and flare reduction projects. 1. Introduction The growing world energy demand for fossil fuels plays a key role in the continuous increase in GHG emissions into the atmosphere. According to the IPCC, atmospheric GHG concentrations will more than triple in the next 50 years compared to pre-industrial levels if no action is taken, posing climate change risks such as damage to natural ecosystems and more extreme weather conditions [1]. As global concerns intensify to reduce GHG emissions, there is a continuous increase in demand for ultra-clean fuels derived from natural gas. Gas-to-Liquids (GTL) technology converts natural gas into high performing, ultra-clean liquid fuels, as alternatives to the conventional refining of crude oil. In the past ten years, there have been technological advances in developing GTL technology on a larger scale, with several commercial scale plants commissioned. This new and emerging technology is expected to contribute a larger share of the world's gas-processing industry in the future [2, 3].

Similar Papers
  • Research Article
  • Cite Count Icon 70
  • 10.1016/j.joule.2020.08.001
Mitigating Curtailment and Carbon Emissions through Load Migration between Data Centers
  • Aug 25, 2020
  • Joule
  • Jiajia Zheng + 2 more

Mitigating Curtailment and Carbon Emissions through Load Migration between Data Centers

  • PDF Download Icon
  • Research Article
  • Cite Count Icon 45
  • 10.1186/s12711-019-0459-5
Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection
  • Apr 29, 2019
  • Genetics, Selection, Evolution : GSE
  • Stephen A Barwick + 4 more

BackgroundSocietal pressures exist to reduce greenhouse gas (GHG) emissions from farm animals, especially in beef cattle. Both total GHG and GHG emissions per unit of product decrease as productivity increases. Limitations of previous studies on GHG emissions are that they generally describe feed intake inadequately, assess the consequences of selection on particular traits only, or examine consequences for only part of the production chain. Here, we examine GHG emissions for the whole production chain, with the estimated cost of carbon included as an extra cost on traits in the breeding objective of the production system.MethodsWe examined an example beef production system where economic merit was measured from weaning to slaughter. The estimated cost of the carbon dioxide equivalent (CO2-e) associated with feed intake change is included in the economic values calculated for the breeding objective traits and comes in addition to the cost of the feed associated with trait change. GHG emission effects on the production system are accumulated over the breeding objective traits, and the reduction in GHG emissions is evaluated, for different carbon prices, both for the individual animal and the production system.ResultsMultiple-trait selection in beef cattle can reduce total GHG and GHG emissions per unit of product while increasing economic performance if the cost of feed in the breeding objective is high. When carbon price was $10, $20, $30 and $40/ton CO2-e, selection decreased total GHG emissions by 1.1, 1.6, 2.1 and 2.6% per generation, respectively. When the cost of feed for the breeding objective was low, selection reduced total GHG emissions only if carbon price was high (~ $80/ton CO2-e). Ignoring the costs of GHG emissions when feed cost was low substantially increased emissions (e.g. 4.4% per generation or ~ 8.8% in 10 years).ConclusionsThe ability to reduce GHG emissions in beef cattle depends on the cost of feed in the breeding objective of the production system. Multiple-trait selection will reduce emissions, while improving economic performance, if the cost of feed in the breeding objective is high. If it is low, greater growth will be favoured, leading to an increase in GHG emissions that may be undesirable.

  • Conference Article
  • 10.36334/modsim.2013.b2.christie
A simple carbon offset scenario tool (COST) for assessing dairy farm abatement options
  • Dec 1, 2013
  • Km Christie + 3 more

The dairy Carbon Offset Scenario Tool (COST) was developed to explore the influence of various abatement strategies on greenhouse gas (GHG) emissions for Australian dairy farms. COST is a static spreadsheet-based tool that uses Australian GHG inventory methodologies, algorithms and emission factors to estimate carbon dioxide, methane and nitrous oxide emissions of a dairy farm system. One of the key differences between COST and other inventory-based dairy GHG emissions calculators is the ability to explore the effect of reducing total farm emissions on farm income, assuming the strategy was compliant with Kyoto rules for carbon offsets. COST provides ten abatement strategies across the four broad theme areas of diet manipulation, herd and breeding management, feedbase management and waste management. Each abatement strategy contains four sections; two sections for data entry (baseline farm data specific to the strategy explored and strategy-specific variables) and two sections for results (milk production results and GHG/economic-related results). Key sensitive variables for each strategy, identified from prior research, and prices for milk production and carbon offsets are adjusted through up/down buttons, which allows users to quickly explore the impact of these variables on farm emissions and profitability. For example, if the cost to implement an abatement strategy is doubled, what carbon offset income would be required to negate this additional cost? Results are presented as changes in carbon offset income, strategy implementation cost, additional milk production income and net farm income on a per annum and on a per GHG emissions intensity of milk production basis. COST currently contains a comprehensive range of strategies for GHG abatement, although some strategies are still in development. As new technologies or farm management practices leading to a reduction in GHG emission become available, these too will be incorporated into COST. To date, two dairy-specific abatement methodologies have been legislated as part of Australia’s commitment to reducing on-farm GHG emissions through it’s the carbon offset scheme, the Carbon Farming Initiative (CFI) and are incorporated into COST. These are the ‘Destruction of methane generated from dairy manure in covered anaerobic ponds’ and the ‘Methodology for reducing greenhouse gas emissions in milking cows through feeding dietary additives’. As an example, we explored the mitigation option Replace supplements with a source of dietary fats (reflecting the second above-mentioned CFI legislated abatement strategy) as feeding a diet higher in dietary fats has been shown to reduce enteric methane emissions per unit of feed intake. A 400 milking herd was fed a baseline diet of 2.6% dietary fat. By replacing grain with hominy meal, at a rate of 5.0 kg dry matter/ cow per day for 90 days during the 3 summer months, the summer diet fat concentration was increased to 6.4%. Enteric methane emissions were reduced by 40 tonnes of carbon dioxide equivalents (t CO 2 e) per annum for the farm. Waste methane and nitrous oxide emissions were also reduced by 0.5 and 1.6 t CO 2 e/annum, respectively. However, as reductions from these two sources of GHG emissions do not qualify for payment with this CFI methodology, their reduction could not be included as an offset income. At a carbon price of $20/ t CO 2 e, the reduction in enteric methane emissions was valued at $800/farm. The implementation cost of replacing grain with hominy was valued at $18,000/farm due to the hominy meal costing an additional $100/t dry matter compared to the grain. However, the additional milk production achieved due to the higher energy concentration of the diet resulted in an additional 70,200 litres and based on a summer milk price of $0.38/ litre, this equated to an additional income from milk valued at $26,676/farm. The overall result was a net increase in farm profit of $9,476/farm when paid on a reduction in total GHG emissions. COST can quickly allow users to ascertain the level of GHG emission reduction possible with various mitigation options and explore the sensitivity of key variables on GHG emissions and farm profitability.

  • Research Article
  • Cite Count Icon 7
  • 10.1016/j.agsy.2021.103203
A framework for assessing the effects of shock events on livestock and environment in sub-Saharan Africa: The COVID-19 pandemic in Northern Kenya
  • Jun 21, 2021
  • Agricultural Systems
  • Michael W Graham + 5 more

A framework for assessing the effects of shock events on livestock and environment in sub-Saharan Africa: The COVID-19 pandemic in Northern Kenya

  • Research Article
  • Cite Count Icon 35
  • 10.1126/science.1093160
Climate change: the political situation.
  • Dec 12, 2003
  • Science
  • Robert T Watson

Climate change: the political situation.

  • Conference Article
  • 10.48141/sscon_15_2024.pdf
ANÁLISE DOS INVENTÁRIOS DE EMISSÕES DE GASES DE EFEITO ESTUFA PUBLICADOS VOLUNTARIAMENTE NO PROGRAMA BRASILEIRO GHG PROTOCOL
  • Dec 12, 2024
  • Silvane Andrade Galhano Gomes + 4 more

The increase in greenhouse gas (GHG) emissions is a global concern due to its impact on climate change. To address this challenge, the development of corporate GHG inventories is crucial, enabling organizations to understand and mitigate their emissions. This study aims to statistically analyze whether there was a significant increase in GHG emissions over a 10-year period by organizations from various sectors of the economy that voluntarily published their inventories in the Brazilian GHG Protocol Program. Data were obtained from the inventories of 66 organizations that published at 2013 and 2022 in the Brazilian GHG Protocol Program. The data was processed and analyzed using Minitab software to determine the significance level of the increase in GHG emissions. A total increase of 159,264,734.26 tCO2e in GHG emissions was observed from 2013 to 2022, with 29 organizations reporting higher emissions and 37 showing reductions. However, statistical analysis demonstrated that there was no significant increase in GHG emissions over the study period. The results highlight the importance of organizations conducting their GHG inventories to enhance transparency and make strategic decisions aimed at mitigating their emissions. Publishing inventories allows for monitoring progress and identifying priority areas for effective interventions. No significant increase in GHG emissions was observed over the 10-year period; therefore, this study reinforces the importance of preparing GHG inventories by organizations. The findings can impact public policies on climate change, supporting the introduction of regulations that mandate the development of inventories and the setting of emission reduction and offsetting targets.

  • Research Article
  • Cite Count Icon 1
  • 10.1016/j.oneear.2021.11.008
Major US electric utility climate pledges have the potential to collectively reduce power sector emissions by one-third
  • Dec 1, 2021
  • One Earth
  • Diana Godlevskaya + 2 more

Major US electric utility climate pledges have the potential to collectively reduce power sector emissions by one-third

  • Conference Article
  • Cite Count Icon 1
  • 10.5339/qfarc.2016.eepp1669
On the Development of a Stochastic Model to Mitigate Greenhouse Gas Emissions in Building and Transportation Sectors
  • Jan 1, 2016
  • Somayeh Asadi + 1 more

Energy-related activities are a major contributor of greenhouse gas (GHG) emissions. A growing body of knowledge clearly depicts the links between human activities and climate change. Over the last century the burning of fossil fuels such as coal and oil and other human activities has released carbon dioxide (CO2) emissions and other heat-trapping GHG emissions into the atmosphere and thus increased the concentration of atmospheric CO2 emissions. The main human activities that emit CO2 emissions are (1) the combustion of fossil fuels to generate electricity, accounting for about 37% of total U.S. CO2 emissions and 31% of total U.S. GHG emissions in 2013, (2) the combustion of fossil fuels such as gasoline and diesel to transport people and goods, accounting for about 31% of total U.S. CO2 emissions and 26% of total U.S. GHG emissions in 2013, and (3) industrial processes such as the production and consumption of minerals and chemicals, accounting for about 15% of total U.S. CO2 emissions and 12% of total ...

  • PDF Download Icon
  • Research Article
  • Cite Count Icon 124
  • 10.5194/essd-13-5213-2021
A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019
  • Nov 10, 2021
  • Earth System Science Data
  • Jan C Minx + 16 more

Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensive up-to-date and reliable information on anthropogenic emissions and removals of greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with a fast-track extension to 2019. Our dataset is global in coverage and includes CO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) and provides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use, land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95th percentile range) by combining statistical analysis and comparisons of global emissions inventories and top-down atmospheric measurements with an expert judgement informed by the relevant scientific literature. We identify important data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-down atmospheric-based emissions estimates is relatively close for some F-gas species (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 % lower than top-down estimates in recent years. However, emissions from excluded F-gas species such as chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) are cumulatively larger than the sum of the reported species. Using global warming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC), global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq. consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O 2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis of global trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions have increased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that global anthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between 2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was never larger than between 2000–2009 and 2009–2018. Our analysis further reveals that there are no global sectors that show sustained reductions in GHG emissions. There are a number of countries that have reduced GHG emissions over the past decade, but these reductions are comparatively modest and outgrown by much larger emissions growth in some developing countries such as China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investments in independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associated with this article (Minx et al., 2021) can be found at https://doi.org/10.5281/zenodo.5566761.

  • News Article
  • Cite Count Icon 1
  • 10.1289/ehp.119-a384a
Scorecard Rates Emission Reductions of Hybrid Vehicles
  • Sep 1, 2011
  • Environmental Health Perspectives
  • David C Holzman

For all its cachet, you might think that hybrid drivetrain technology is inherently green. But only 13 of 34 hybrid vehicles assessed achieve better than a 25% reduction in greenhouse gas (GHG) emissions, and just 3 exceed a 40% reduction, according to an evaluation by the Union of Concerned Scientists (UCS).1 Moreover, reductions in GHG emissions do not necessarily correlate with reductions in other toxic emissions. Like any engine output–improving technology, hybrid technology can boost both fuel efficiency and power—but the more you boost one, the less you can boost the other. That dichotomy spurred the UCS to develop its “hybrid scorecard,” which rates each hybrid according to how well it lives up to its promise of reducing air pollution.2 All the vehicles were from model year 2011 except for one, the 2012 Infiniti M Hybrid. First the UCS scored each hybrid on how much it reduced its GHG emissions relative to its conventional counterpart, on a scale of zero (least reduction) to 10 (greatest reduction). These scores reflect the percentage in fuel efficiency gain. For example, the Toyota Prius gets 50 mpg3 compared with 28 mpg for the comparable Toyota Matrix. This represents a 44.0% reduction in GHG emissions, earning the Prius a GHG score of 9.4. At the bottom of the scale, the 21-mpg hybrid VW Touareg reduces GHG emissions only 10% over the 19-mpg conventional Toureg, for a score of 0.0. With a 46% improvement, the luxury Lincoln MKZ Hybrid had the greatest reduction over its conventional counterpart. The UCS also scored hybrids for absolute emissions (rather than relative to the conventional model) of air pollutants including particulate matter, carbon monoxide, hydrocarbons, and nitrogen oxides. These scores, on a scale of zero (dirtiest) to 10 (cleanest), are based on California certifications for tailpipe emissions. As the scorecard showed, a vehicle that emits less heat-trapping gases may not necessarily emit less of other air pollutants. For example, the Mercedes Benz S400 Hybrid scored 9 on air pollution reduction, alongside the Prius and the Lincoln MKZ, but only 1.3 on GHG emissions. HYBRID SCORECARD: Top 10 Nonluxury Hybrids by Total Environmental Improvement Score “Hybrid technology doesn’t add additional challenges [to reducing exhaust pollutants] that can’t be addressed through design of the vehicle’s emission controls,” says Don Anair, senior vehicles analyst at the UCS. “Numerous manufacturers of hybrids are meeting the lowest emissions levels. Hybrid manufacturers who aren’t delivering the lowest smog-forming emissions have chosen not to do so.” Each vehicle’s air pollution and GHG scores were averaged into a total “environmental improvement score,” again with the MKZ and the Prius leading the pack, and the Touareg scraping bottom. The UCS also scored “hybrid value” (the cost of reducing GHG emissions in dollars per percent reduction) and “forced features” (options you must buy with the hybrid whether you want them or not). HYBRID SCORECARD: Top 10 Luxury Hybrids by Total Environmental Improvement Score Luke Tonachel, vehicles analyst with the Natural Resources Defense Council, compliments the scorecard for illustrating that hybrid technology is not automatically green. He says, “We should improve the efficiency of all vehicles, and [hybrid technology] is just one technology that can get us there if applied with that goal in mind.” Nonetheless, Jamie Kitman, the New York bureau chief for Automobile Magazine, questions the wisdom of emphasizing percentage improvement in gas mileage rather than absolute miles per gallon. At 21 mpg, the hybrid Cadillac Escalade 4WD represents a 29% improvement over the 15-mpg conventional model, saving nearly 2 gallons per 100 miles. But the hybrid Escalade is still a gas guzzler, and Kitman says he wishes people would see through the marketing that encourages them to buy SUVs and “crossovers” rather than ordinary cars, which are more efficient than either. Says Anair, “The scorecard shows that automakers can pair hybrid technology with advanced emission controls to help tackle climate change while reducing the health impacts from breathing polluted air.” However, he adds, alluding to the stark variation in how much hybrid technology boosted fuel efficiency, “Not all automakers are delivering on the full promise of this technology.”

  • Research Article
  • Cite Count Icon 17
  • 10.3390/ani12172185
Effects of Essential Oil Blends on In Vitro Apparent and Truly Degradable Dry Matter, Efficiency of Microbial Production, Total Short-Chain Fatty Acids and Greenhouse Gas Emissions of Two Dairy Cow Diets
  • Aug 25, 2022
  • Animals : an Open Access Journal from MDPI
  • Rosetta M Brice + 7 more

Simple SummaryLivestock accounts for an estimated 80% of total agricultural greenhouse gas emissions, making abatement of greenhouse gas emissions from livestock a high-priority challenge facing animal nutritionists. Mitigating greenhouse gases in ruminants without reducing animal production is desirable both as a strategy to reduce global greenhouse gas emissions and as a way of improving dietary feed efficiency. The inclusion of feed additives in the diets of ruminants can reduce energy losses as methane, which typically reduces animal performance and contributes to greenhouse gas emissions. The present study evaluated the abatement potential of nine essential oil blends to mitigate greenhouse gas emissions. The inclusion of the blends resulted in a reduction in greenhouse gas emissions and in vitro apparent dry matter digestibility with higher values noted for the control treatment. A similar trend was noted for in vitro truly dry matter digestibility with higher values noted in the control treatment. The efficiency of microbial production was greater for the blends. The inclusion of the blends affected the total and molar proportion of volatile fatty acid concentrations. Overall, inclusion of the blends modified the rumen function resulting in improved efficiency of microbial production.The current study evaluated nine essential oil blends (EOBs) for their effects on ruminal in vitro dry matter digestibility (IVDMD), efficiency of microbial production, total short-chain fatty acid concentration (SCFA), total gas, and greenhouse gas (GHG) emissions using two dietary substrates (high forage and high concentrate). The study was arranged as a 2 × 2 × 9 + 1 factorial design to evaluate the effects of the nine EOBs on the two dietary substrates at two time points (6 and 24 h). The inclusion levels of the EOBs were 0 µL (control) and 100 µL with three laboratory replicates. Substrate × EOBs × time interactions were not significant (p > 0.05) for total gas and greenhouse gas emissions. The inclusion of EOBs in the diets resulted in a reduction (p < 0.001) in GHG emissions, except for EOB1 and EOB8 in the high concentrate diet at 6 h and for EOB8 in the high forage diet at 24 h of incubation. Diet type had no effect on apparent IVDMD (IVADMD) whereas the inclusion of EOBs reduced (p < 0.05) IVADMD with higher values noted for the control treatment. The efficiency of microbial production was greater (p < 0.001) for EOB treatments except for EOB1 inclusion in the high forage diet. The inclusion of EOBs affected (p < 0.001) the total and molar proportion of volatile fatty acid concentrations. Overall, the inclusion of the EOBs modified the rumen function resulting in improved efficiency of microbial production. Both the apparent and truly degraded DM was reduced in the EOB treatments. The inclusion of EOBs also resulted in reduced GHG emissions in both diets, except for EOB8 in the high forage diet which was slightly higher than the control treatment.

  • Research Article
  • Cite Count Icon 19
  • 10.1016/j.energy.2023.130183
Greenhouse gas contribution and emission reduction potential prediction of China's aluminum industry
  • Dec 30, 2023
  • Energy
  • Junya Wang + 3 more

Greenhouse gas contribution and emission reduction potential prediction of China's aluminum industry

  • Research Article
  • Cite Count Icon 26
  • 10.1021/es4020585
Alternative Technologies for the Reduction of Greenhouse Gas Emissions from Palm Oil Mills in Thailand
  • Oct 18, 2013
  • Environmental Science &amp; Technology
  • Roihatai Kaewmai + 3 more

Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.

  • PDF Download Icon
  • Research Article
  • Cite Count Icon 13
  • 10.3390/su13031430
Gaps in Reporting Greenhouse Gas Emissions by German Hospitals—A Systematic Grey Literature Review
  • Jan 29, 2021
  • Sustainability
  • Claudia Quitmann + 2 more

To mitigate the negative (health) consequences of climate change, the Paris Agreement demands a radical reduction of greenhouse gas (GHG) emissions. The health sector contributes considerably to climate change worldwide. In Germany it is responsible for 6.7% of national GHG emissions. The transition to low-carbon hospitals requires detailed knowledge of the amount and sources of GHG emissions. This study aimed at capturing the status quo of GHG emission reporting by German hospitals and at examining characteristics of the reports. Therefore, we performed a grey literature review with pre-defined inclusion and exclusion criteria. The search strategy comprised hand-searching specific databases, targeted websites and web search engines via a standardized set of search terms. We found 232 German hospitals reporting their GHG emissions, representing 12% of all hospitals. Yet, only 62 hospitals (3%) met the inclusion criteria for further analysis. These reports do not comprise all energy-related GHG emissions, omit GHG emissions occurring up- and downstream of hospitals and mainly include CO2, but leave out other GHG. Consequently, there are severe gaps regarding GHG emissions reports of German hospitals. If Germany wants to comply with the Paris Agreement, hospitals need to be obliged to follow a standardized methodology to report and reduce GHG emissions.

  • Research Article
  • Cite Count Icon 4
  • 10.1016/j.scitotenv.2024.171637
Modeling greenhouse gas emissions from biological wastewater treatment process with experimental verification: A case study of paper mill
  • Mar 11, 2024
  • Science of The Total Environment
  • Jiahui Han + 7 more

Modeling greenhouse gas emissions from biological wastewater treatment process with experimental verification: A case study of paper mill

Save Icon
Up Arrow
Open/Close
  • Ask R Discovery Star icon
  • Chat PDF Star icon

AI summaries and top papers from 250M+ research sources.

Search IconWhat is the difference between bacteria and viruses?
Open In New Tab Icon
Search IconWhat is the function of the immune system?
Open In New Tab Icon
Search IconCan diabetes be passed down from one generation to the next?
Open In New Tab Icon