Abstract

In the present study, selenium nanoparticles were biologically synthesized by non-pathogenic, economic and easy to handle bacterium Ralstonia eutropha. The selenium oxo anion was reduced to selenium nanoparticles in the presence of the bacterium. The bacterium was grown aerobically in the reaction mixture. An extracellular, stable, uniform, spherical selenium nanoparticle was biosynthesized. The TEM analysis revealed that the biosynthesized selenium nanoparticles were spherical in shape with size range of 40-120nm. XRD and SAED analysis showed that nanocrystalline selenium of pure hexagonal phase was synthesized. The formation of actinomorphic trigonal selenium nanorods was also observed. A mechanism of biosynthesis of selenium nanoparticles by R. eutropha was proposed. The biosynthesized selenium nanoparticles were investigated for their antimicrobial activity against potential pathogens. Selenium nanoparticles showed excellent antimicrobial activity. The 100, 100, 250 and 100µg/ml selenium nanoparticles were found to inhibit 99% growth of Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Streptococcus pyogenes, respectively. Similarly, the 500µg/ml of selenium nanoparticles was found to inhibit the growth of pathogenic fungi Aspergillus clavatus. The antimicrobial efficacy of selenium nanoparticle was comparable with commercially available antibiotic drug Ampicillin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.