Abstract

Plant extract is affordable and does not require any particular conditions; rapid production of nanoparticles using plants offers more advantages than other approaches. Selenium nanoparticles (SeNPs) have received much attention in the last decade due to SeNPs diverse and different applications. Herein, this study aimed to biosynthesize SeNPs using aqueous extract of Urtica dioica leaf through green and ecofriendly method. Moreover to fully characterize SeNPs using different techniques, and to evaluate it for antimicrobial activity as well as anticancer activity. SeNPs were biosynthesis using aqueous leaf extract of U. dioica (stinging nettle). The biosynthesized SeNPs were characterized using UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive electron spectroscopy (EDX), transmission electron microscopy (TEM), and thermal-gravimetric analysis (TGA). Antimicrobial and anticancer activities of biosynthesized SeNPs were assessed. Results illustrated that SeNPs exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria, as well as unicellular and multi-cellular fungi. Moreover, minimal-inhibitory concentration (MIC) of SeNPs against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus were 250, 31.25, and 500μgmL-1 , respectively, while were 62.5, 15.62, 31.25, and 7.81μgmL-1 against Candida albicans, Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, respectively. The cytotoxicity of SeNPs was performed on Vero normal-cell line CCL-81, where IC50 was 173.2μgmL-1 . For the first time, aqueous stinging nettle leaf extract was utilized to biosynthesize SeNPs in a green method. SeNPs have outstanding antimicrobial-activity against pathogenic bacterial and fungal strains. Moreover, SeNPs have promising anticancer activity against HepG2 cancerous cell line without cytotoxicity on Vero normal cell line. Finally, the biosynthesized SeNPs via aqueous extract of stinging nettle leaf exhibited potential antibacterial, antifungal, and anticancer action, making them useful in the medical field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.