Abstract

Ocimum gratissimum L. is a perennial herbaceous plant used in the treatment of fungal and bacterial infections. Green synthesis has provided cost effective, environment friendly procedure and raising safe strategies for the synthesis of nanoparticles. This study was aimed at investigating the potential of O. gratissimum for the synthesis of selenium nanoparticles (SeNPs) and their antimicrobial activities. Phytochemical screening on aqueous extract was carried out using standard procedures. Selenium nanoparticles was biosynthesized by O. gratissimum and characterized using Visual detection, UV-Visible spectroscopy, Scanning Electron Microscope, Transmission Electron Microscope, Energy dispersive X-ray, Fourier Transform Infra-red spectroscopy and X-ray diffraction spectroscopy. Antimicrobial activity of the biosynthesized selenium nanoparticles by O. gratissimum was done using agar well diffusion method. Saponins, tannins, cardiac glycosides, terpenoids and phenols were present. The biosynthesized SeNPs had a strong plasmon resonance band at 300 nm, changes in colour from dark brown to ruby red. The SeNPs were spherical and aggregated with varying shapes and size ranged from 20 – 50 nm. Strong signal of selenium element was observed. Hydroxyl, esters, aldehyde, alkane and amine are present and responsible for the efficient stabilization and bioreduction of Selenium nanoparticle. Furthermore, biosynthesized SeNPs by O. gratissimum (OGSeNPs) exhibited higher antimicrobial activity against both Gram ositive and Gram negative bacteria. Green synthesis of nanoparticles is a promising method in the biomedical field, due to its high bioactive components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.