Abstract

AbstractEnvironmental methodologies are gaining recognition in this modern world. Environmental nanotechnology plays a major role in improving modern fields of environmental engineering and science. Metal oxide nanoparticles have exceptional properties due to their small size, including quantum confinement, surface‐to‐volume ratio, plasmon excitation, high biocompatibility, and surface modifiability. The biosynthesis of nanoparticles using fungi, bacteria, and plants through various biotechnological techniques is currently a new paradigm for environmental protection. Synthesis of nanoparticles through plant extract is good because it eliminates the dangers of toxic chemicals, it is environmentally friendly, simpler, and safer as the reaction time is reduced and it can also be increased in size for higher operation. The present study is based on the development of zinc oxide nanoparticles from papaya leaf extract where zinc nitrate is used as a precursor. The biosynthesized nanoparticles are characterized by X‐ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, energy‐dispersive X‐ray analysis, UV‐visible spectroscopy, and dynamic light scattering analysis. The crystalline phase determination of the zinc oxide nanoparticles is analyzed by X‐ray diffraction and the formation of polycrystalline zinc oxide nanoparticles is confirmed. FT‐IR spectrum reveals the main functional groups and chemical information in zinc oxide nanostructures. Morphological analysis is performed using SEM at different magnification levels. EDAX analysis shows the purity of the composite samples. Optical characterization is performed using a UV–vis spectrophotometer. DLS analysis shows that the nanoparticles formed have a relatively well‐defined dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.