Abstract

Nanotechnology is a valuable strategy for managing a number of medicinal, agricultural, and environmental concerns. Cocculus pendulus was used for selenium nanoparticles (SeNPs) synthesis to evaluate their usage for microbial inhibition and to enhance plant resistance to heavy metals. Mono-dispersed, spherical shape, and mean diameter (36.19 nm) of SeNPs were documented. More inhibitory potential was associated with SeNPs with inhibition zones of 38±0.3, 18±0.2, 18±0.1, 31±0.2, and 27±0.1 mm than extract of C. pendulus against B. subtilis, S. aureus, E. coli, K. pneumoniae, and C. albicans, respectively. SeNPs had successfully scavenged the free radicals of 2,2-diphenyl-1-picrylhydrazyl (DPPH) with lower IC50 (inhibitory concentration that inhibit 50% of DPPH) value (10.31 µg/mL) than that of C. pendulus extract (55.54 µg/mL). The effect of C. pendulus extract (200 mg/kg soil) alone or in combination with SeNPs (15 mg/kg soil of SeNPs) as a soil drench on shoot, root lengths, plant pigments, lead and cadmium contents of Corchorus olitorius under lead and cadmium stress (5 mg/L) was investigated. The pigments quantity and plant growth were decreased by cadmium and lead poisoning. Application of C. pendulus extracts or SeNPs decreased the Pb and Cd concentrations and improved the growth and metabolites of Corchorus olitorius plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call