Abstract

We report on green (550–560 nm) electroluminescence (EL) from (Al0.5Ga0.5)0.5In0.5P-(Al0.8Ga0.2)0.5In0.5P double p-i-n heterostructures with monolayer-scale GaP insertions in the cladding layers and light-emitting diodes based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. At moderate current densities (∼500 A/cm2), the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (∼550 nm at room temperature). At high current densities (>1 kA/cm2), a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4 kA/cm2, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14 kA/cm2. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure, which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p-doped (Al0.8Ga0.2)0.5In0.5P cladding layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call